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Abstract. The TOP 500 list is the most widely regarded ranking of
modern supercomputers, based on Gflop/s measured for High Perfor-
mance LINPACK (HPL). Ranking the most powerful supercomputers is
important: Hardware producers hone their products towards maximum
benchmark performance, while nations fund huge installations, aiming
at a place on the pedestal. However, the relevance of HPL for real-
world applications is declining rapidly, as the available compute cycles
are heavily overrated. While relevant comparisons foster healthy compe-
tition, skewed comparisons foster developments aimed at distorted goals.
Thus, in recent years, discussions on introducing a new benchmark, bet-
ter aligned with real-world applications and therefore the needs of real
users, have increased, culminating in a highly regarded candidate: High
Performance Conjugate Gradients (HPCG).
In this paper we present an in-depth analysis of this new benchmark.
Furthermore, we present a model, capable of predicting the performance
of HPCG on a given architecture, based solely on two inputs: the effective
bandwidth between the main memory and the CPU and the highest
occuring network latency between two compute units.
Finally, we argue that within the scope of modern supercomputers with
a decent network, only the first input is required for a highly accurate
prediction, effectively reducing the information content of HPCG results
to that of a stream benchmark executed on one single node.
We conclude with a series of suggestions to move HPCG closer to its
intended goal: a new benchmark for modern supercomputers, capable of
capturing a well-balanced mixture of relevant hardware properties.

1 Introduction

High Performance Computing (HPC) has emerged as a powerful tool in re-
search and industry. Thus, comparing the power of supercomputers has become
a central topic. The HPC community selected the High Performance LINPACK
benchmark (HPL) as the central metric, reporting the corresponding Gflop/s
for the TOP500 ranking. HPL is an example of a highly scalable MPI program,
heavily optimized to squeeze the utmost performance out of parallel machines.
Combined with a compute heavy kernel, HPL almost reaches the theoretical
Gflop/s peak performance of machines. However, the majority of real-world ap-
plications feature kernels which are memory-bound on modern hardware and
usually reach less than 20% of the theoretical peak performance [19]. Thus, the



current ranking relies purely on a heavily optimized, compute-bound application,
arguably very untypical for real-world HPC applications.

The discrepancy in performance between HPL and real-world applications
has grown larger over the years, mainly due to a developing trend in computer
architectures: the available computing power increases a lot faster than memory
speed. The latter therefore limits the data throughput of an increasing number of
computational kernels. In HPL this is irrelevant, as the amount of data required
per computation (Byte/Flop) is very small. Discussions on HPL’s lack of rep-
resentativity have become more frequent in recent years and a new benchmark
was proposed to address the above mentioned issues: High Performance Conju-
gate Gradients (HPCG). The most expensive kernel of HPCG is dominated by
a matrix-vector multiplication. With a Byte/Flop ratio bigger than 4 [10], this
kernel shows memory-bound behavior for all current hardware.

In this paper, we present a model capable of predicting the performance
of HPCG for a given architecture within 3% of the real value, based on two
simple hardware metrics: effective memory bandwidth from main memory and
IC latency. The good predictive power of the model indicates, that only these two
hardware metrics are relevant for HPCG performance. Furthermore, the model
allows us to extrapolate HPCG’s performance to future systems.

The paper is organized as follows: In section 2 on overview of related work
is presented. Section 3 describes hardware platforms and software enviroments
used in this work. Section 4 explains the transition from the HPL to the HPCG
benchmark and analyzes the implementation of HPCG. In section 5 we introduce
the performance model. Section 6 evaluates the performance model and predicts
the performance of HPCG on future systems. Finally, in section 7 we draw
conclusions and discuss future work.

2 Related Work

In this section we give a short overview on related work, in particular alterna-
tive benchmarks to quantify the performance of HPC systems and performance
models for these benchmarks where available.

While HPCG and HPL both consist of a single application which is dom-
inated by a single kernel, the NAS parallel benchmark [5][4] is a collection of
small applications or kernels from the fields of computational fluid dynamics,
linear algebra, etc. A MPI + OpenMP version has been presented and analyzed
in [9]. Similarly, the SPEC MPI2007 benchmark suite [17] is a collection of MPI-
parallel compute-intensive applications which has been analyzed in [21]. While
the type of applications used in both of these benchmark suites make up a signif-
icant part of the workload in most supercomputing centers, the resulting number
is in both cases a somewhat arbitrarily weighted total execution time. Further,
these benchmarks do not explicitly target scalability of very large machines.

The HPC Challenge benchmark [16] in contrast consists of very low-level
kernels (including HPL, Stream, FFT, Random Access, etc), but does not try to
produce a single aggregated metric out of these. Instead the individual bench-



marks can be used to measure specific characteristics of a systems. For instance,
this paper uses a Stream benchmark to quantify the effective memory band-
width. Similarly, Random Access can be used to measure the latency of remote
memory accesses, and FFT to quantify the quality of all-to-all communication
capabilities.

The most widely used benchmark to characterize the performance of super-
computers is still HPL [18]. Discussions on shortcomings of HPL can be found
in [11][13].

The proposed new benchmark HPCG investigated here is based on a itera-
tive sparse-matrix Conjugate Gradient kernel. The initial version of HPCG, i.e.
v1.0, used a simple additive Schwarz pre-conditioner and symmetric Gauss-Seidel
sweep for each sub-domain [11]. The pre-conditioner was replaced in version 2.0
with a multi-grid approach using 3 levels of coarsening. Effectively, this is a kind
of tiling of the algorithm and allows to use the caches more effectively. Perfor-
mance analysis of pre-conditioners is a vast field of research. Here we mention
only [3], discussing a multi-grid approach similar to the one used in HPCG, and
[6] for a survey of various other techniques. Most pre-conditioners use sparse-
matrix vector multiplication which was modelled and optimized for instance in
[7] [8]. An other important part of the benchmark is network communication,
were related work includes [20] on simulators for network interconnects, [15]
[14] on modeling of collective MPI operations and [22] on MPI communication
overhead analysis.

3 Platform

In this section we describe the hardware and explain the software stack used in
this work. Real performance data on HPCG (version 2.4) was collected on three
different platforms, which shall be referred to as A, B and C. Furthermore, as
will be described in section 6, large validation runs were performed on a further
platform not included in the process of modelling.

– The platform A is based on the XC30 architecture. It contains 64 nodes with
2 chips of the Intel SandyBridge 2,6 GHz E5-2670 per node. Each chip has 8
cores (16 HT) with 20 MB of shared L3 cache per chip and 4 memory chan-
nels connected with DDR3 1600 MHz, which makes the maximum memory
bandwidth 51.2GB/s. The cores use ”Turbo Boost” technology that allows
to increase the frequency to 3.3 GHz as long as the thermal budget is not
exceeded. All of the cores can execute 8 Flop per cycle. Peak performance
per socket is 166.4 Gflop/s. The interconnection network is an Aries[1] with
a Dragonfly topology, a bandwidth of up to 117GB/s per node and a latency
between the closest nodes of less than 2µs.

– The platform B is based on AMD Opteron Interlagos 6276 processors (2
chips per node). Each chip has 16 cores and 16MB of shared L3 cache.
The Interlagos with DDR3 PC3-12800 gives a memory bandwidth of 51.2
GB/s. Each core runs at 2.3GHz (up to 3.2 GHz with TurboCore) and can



execute 4 Flop per cycle. Peak performance per socket is 147.2 Gflop/s. The
interconnect is of the type Gemini [2] with a 3D torus topology, 160 GB/s
bandwidth per node and the lowest latency of 2µs.
On platforms A and B, we use the GNU Programming Environment: C/C++
GNU Compiler 4.8, MPICH-6.2 Cray MPI library that uses the MPICH2
distribution from Argonne.

– The platform C is based on Intel Xeon X5560 chips (Nehalem), it contains
2 chips per node. The chip contains 4 cores (8 HT) and works at 2.80 GHz
(3.20 GHz maximum for Turbo Boost). The L3 cache size is 8MB, 3 channels
with 1333 MHz memory interface which delivers 32GB/s. Peak performance
per socket is 44.8 Gflop/s.
The Infiniband interconnect of platform C uses Voltaire Grid Director 4036
switches with 36 QDR (40Gbps) ports (6 backbone switches). We use C/C++
GNU Compiler 4.8 and the OpenMPI library 1.6.5.

4 From the HPL to the HPCG benchmark

In this section, we review the HPCG benchmark. First we comment on the
importance and relevance of a new benchmark for comparing the most powerful
supercomputers in the world, then we describe the structure and routines of the
implementation.

4.1 Transition

Two times per year, the TOP500 project publishes a ranking of the worlds most
powerful supercomputers. The ranking is based on performance achieved for
HPL, measured in Gflop/s. HPL implements a LU decomposition with partial
pivoting.

The TOP500 measurement rules allows modifying the internal functions and
tuning input parameters for an optimal result. This modification freedom has
lead to significant restructuring of the code and redesigns of the input. Mean-
while, HPL is a highly optimized software package. Furthermore, the arbitrary
problem size, combined with the compute complexity O(N3) of the matrix multi-
plication, implies selecting the largest problem size that fits to the main memory.
This straight forward choice leads to such enormous costs of the main kernel, that
everything else becomes effectively irrelevant. Furthermore, due to the nature of
the kernel, the Byte/Flop ratio is small and it is therefore purely compute-bound.
HPL is a non-trivial code with complex communication patterns. However, for
the reasons explained above the performance-optimized HPL runs display an al-
most identical behaviour to a pure matrix multiplication and reach around 90%
of the theoretical peak performance.

Real-world applications usually do not have such an increadibly expensive
compute-bound kernel, but a more diverse set of kernels, which do not dwarf
communication costs. Furthermore, many kernels have large Byte/Flop ratios,
rendering them memory-bound. Thus, with real applications 20% of theoretical



peak is considered very good. Finally, the trend in hardware development points
towards decreasing ratios of available Bytes per Flop, which will decrease the
achievable percentage of theoretical peak even further.

The lacking representativity of HPL is increasingly a matter of general dis-
cussion. HPCG has been developed with these discussions in mind, aiming at a
far superior representativity. HPCG is not intended to replace HPL, but rather
to complement it.

HPCG features the same freedom regarding modification of routines and
problem size as HPL and retains Gflop/s as the unique evaluation metric. The
crucial difference between HPL and HPCG is the respective main computational
kernel. While in HPL it is a matrix multiplication, in HPCG it is a matrix vector
multiplication. As we will show, the higher Byte/Flop of the matrix vector mul-
tiplication renders it memory-bound on current and most likely future hardware,
leading to a better representativity for real-world applications.

4.2 HPCG structure and routines

In this paper, we used the HPCG version 2.4 without any further modification.
The code is written in C/C++ and for parallelization the user can select MPI
and/or OpenMP at compile time. The problem size and minimum execution time
is specified in the input file. In order to produce official results, the execution
time has to be at least 1 hour. The authors of HPCG suggested to increase
the minimal problem size to achieve a memory footprint beyond L3 cache sizes
[12], but this is currently not contained in the requirements for the benchmark
(currently the minimal size is 16,16,16).

Comparing MPI with hybrid MPI/OpenMP on homogeneous clusters, we de-
cide to model only pure MPI execution, as the performance is much higher than
for hybrid execution. There are two main reasons for it: First, the HPCG algo-
rithm is well balanced on MPI level, and the OpenMP dynamic balancing feature
cannot deliver any performance improvement, and second, OpenMP threads are
idle during communication operation due to the fork/join model which lead to
performance drop.

The HPCG benchmark (version 2.4) is based on a conjugate gradient solver,
where the pre-conditioner is a three-level hierarchical multi-grid method (MG)
with Gauss-Seidel relaxation. The number of iterations is fixed at 50 per set,
which is sufficient for the residual to drop below 1−6. The structure of the main
loop is shown in Figure 1.

The algorithm starts with MG that contains symmetric Gauss-Seidel(SYMGS)
and sparse matrix-vector multiplication(SpMV) for each depth level. Data is dis-
tributed across nodes, thus SYMGS and SpMV require data from their neigh-
bors. Their predecessor, an exchange halos(ExchangeHalos) routine, provides
data for SYMGS and SpMV, therefore performing communication with neigh-
bors. An iteration within the main loop also calls the SpMV/ExchangeHalos
pair. Dot product (DDOT) locally computes the residual, while MPI Allreduce
follows DDOT and completes a global dot product operation. WAXPBY updates
a vector with the sum of two scaled vectors.



for ( i = 0; i<50 && normr>err; i++ ){
MG(A,r,z);( , , );
DDOT( r ,t ,rtz );
Allreduce ( rtz );

if( i > 1 )

/*MG routine*/

if( depth <3){if( i > 1 )
beta = rtz/rtzold;   
WAXPBY( z, beta, p );

if( depth <3){
ExchangeHalos( );
SYMGS( );
ExchangeHalos( );
SpMV( );ExchangeHalos( A, p);

SpMV( A, p, Ap );
DDOT ( p, Ap, pAp );
Allreduce ( pAp);

SpMV( );
MG( depth++ )
ExchangeHalos( );
SYMGS( );Allreduce ( pAp);

alpha =rtz/pAp;
WAXPBY( x, alpha, p);
WAXPBY( r, ‐alpha, Ap);

( )

( )
}else{

ExchangeHalos( );
SYMGS( );

}DDOT( r, r, normr );
Allreduce (normr);

normr = sqrt( normr);

}

q ( );
}

Fig. 1. Pseudocode of the HPCG main loop and the Multi-Grid routine. Modeled
routines are basic blocks for the HPCG pseudocode.

The routines SYMGS, SpMV, WAXPBY, DDOT are the basic computational
blocks of HPCG, while the routines MPI Allreduce and ExchangeHalos are the
basic communication blocks. In the next section we discuss internals of these
routines and how they are modelled.

5 Model

In this section, we describe basic considerations for modelling the performance
of HPCG. From these considerations, the executing time of every routine is
derived. In combination with an estimation of the number of Flop, this results
in a model for predicting the Gflop/s which can be achieved with HPCG on a
given hardware.

5.1 Basic Considerations

Estimating execution time of a routine requires the following information: type
and number of operations of the routine, the size of memory used by the routine
and technical information on the machine (system description).
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Fig. 2. Required memory per MPI process for different problem sizes of HPCG.

Large HPC machines in essence consist of two parts: shared memory nodes
for computation and the interconnection network responsible for communication
between nodes.

We discuss and model two distinct classes of routines: computational and
communication. Communication depends on the interconnection characteristics,
while computation depends on the characteristics of the compute nodes.

Memory vs. compute bound The execution of a computational kernel con-
tains two phases:
– Memory operations, i.e. fetching data from memory and writing results back
– Execution of arithmetic and logic operations
The memory speed and the amount of data determine the execution time of
memory operations, while the CPU clock speed, Flop per cycle, amount and
type of operations define the execution time of computation. The more expen-
sive of the two, memory operations vs. computation, limits the performance and
thus renders the overall kernel memory- or compute-bound.

The metric Byte/Flop quantifies the amount of data a kernel requires to
perform one Flop. When used for hardware, it quantifies the maximum amount
of data which can be delivered per available Flop.



HPCG mainly performs a matrix-vector operation on sparse matrices. The
number of Flop to be performed is 2 ∗ nnz, where nnz is the total number of
non-zero elements. The size of one float (double) is 8 Bytes and the required
memory is (nnz+2 ∗ n) * 8 Bytes, where n is the matrix dimension. For large
problem sizes nnz ≈ 27 ∗ n. The Byte/Flop requirement of HPCG is therefore
≈ (28/27 ∗ nnz ∗ 8Bytes)/(2 ∗ nnzF lop) > 4Byte/Flop.

In order to check the limitation of HPCG we compare the Byte/Flop demand
of HPCG with the respective values for the used hardware, as shown in table 1.

HPCG Platform A Platform B Platform C

Byte/Flop > 4 0.3077 0.3478 0.7142
Table 1. Performance for platforms A-C in terms of Byte/Flop and the Byte/Flop
requirement for HPCG.

Clearly, HPCG is memory-bound, as the amount of Flop that can be exe-
cuted is limited by the maximum data throughput of the respective platform.
Furthermore, none of the TOP500 machines offers anywhere near 4 Byte/Flop.
A vector processor delivers up to 1 Byte/Flop, while a scalar processor usually
delivers less than 0.5 Byte/Flop.

Thus, knowing the effective bandwidth and the required data for a given
routine directly allows us to model the execution time. The theoretical peak
of memory bandwidth is not reachable due to the internal implementation of
the processor architecture and its resources. Further, there is no reliable way to
estimate the effective memory bandwidth from the theoretical one. Therefore,
measuring the effective bandwidth is an unavoidable step and in this work we use
the Triad stream benchmark kernel. Usually one core cannot exploit the whole
memory bandwidth of a socket, so we occupy all cores with a stream kernel,
measuring the total effective memory bandwidth of the socket. From this, we
compute the average effective memory bandwidth per core and use it for the
performance model.

Communication In HPCG there is collective communication (MPI Allreduce)
and the routine HaloExchange, performing a set of point-to-point communica-
tion.

The amount of data in the MPI Allreduce is independent of the problem
size. However, the cost of the collective routine increases with number of MPI
processes (N) and therefore becomes relevant for very large supercomputers.

The amount of data communicated in HaloExchange depends on the problem
size. However, the cost is independent of N .

Problem size We evaluated HPCG on the node level for different problem sizes.
Figure 3 shows performance results in terms of Gflop/s for different problem



sizes, running on three different platforms. Minimum problem size corresponds
to the minimal size allowed for the benchmark, 16x16x16 3D sparse matrix per
MPI process. We distinguish three different phases: problem size that fits to the
L3 cache, a transition phase and a constant performance regime. The smallest
possible problem size requires 2.1 MB per core and only fits to the L3 cache
of the platform A (2.5MB/core). In the transition phase the problem is only
slightly larger than L3 cache and the performance depends strongly on the cache
properties. For larger problem sizes the performance asymptotically approaches a
constant value and depends on the effective memory bandwidth to main memory
only.
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Fig. 3. Gflop/s of computational routines for different problem sizes.

If the memory footprint fits to the L3 cache, the kernels still are memory
bound, however, the effective bandwidth of interest is to L3 cache instead of to
main memory. The difference in these bandwidths is large. We argue that, while
the bandwidth to main memory is a relevant metric regarding the suitability
of a given hardware for real-world applications, the size of the L3 cache is less
relevant. It therefore makes little sense that the size of the L3 cache has a
large impact on the measured performance. We suggest therefore to increase the
minimal problem size, in order to avoid this scenario, which is in line with the



opinion of the authors [12]. In the following we will assume this limitation is in
place.

5.2 Modelling computational routines

The execution time of all computational kernels depend on the size of the 3D
sparse matrix and the number of non-zero elements per local row. The number
of local rows is equal to nx ∗ ny ∗ nz, while the number of non-zero elements in
a row is 27 or fewer. The number 27 is hardcoded within the benchmark. The
limit is shown below:

lim
nx∗ny∗nz→∞

numberOfNonzerosPerRow = 27

For a large problem size we consider the number of non-zeros as equal to 27.
Instances of computational routines called directly from the main loop work on
the whole domain, while the MG routine calls recursively a set of computational
routines, reducing the resolution per depth. We will discuss the MG routine
further down.

The number of outer iterations (LNI) appears in all computational kernels
and sub-kernels:

LNI =
nx ∗ ny ∗ nz

23∗d

SYMGS The Symmetric Gauss-Seidel Method is the most expensive routine in
the benchmark (except for MG, which is a combination of routines). It performs
two steps: forward and backward sweeps. Regarding the memory footprint and
number and type of operations, the two steps are identical. Each step performs
a two dimensional loop, the outer number of iterations being LNI and the inner
number 27. Pseudo code is shown below:

Loop j=1..LNI(depth)

Loop i=1..27

c[i]+=a[j]*b[index[j]

endloop

c[i]+=d[i]*b[i]

b[i]=c[i]/d[i]

endloop

The kernel is based on a Flop with double precision, where one factor has in-
direct addressing. The two dimensional loop fetches two doubles and one integer
in each iteration which makes 20 Bytes in total (arrays a and b in pseudo code).
The process unit also fetches arrays c and d in the outer loop and a number of
non-zero elements, which increases the total size of data in memory. We model
the execution time by dividing the required data by the effective bandwidth from
main memory(BWeff):

executionSYMGS(sec) = 2 ∗ LNI ∗ (20 + 20 ∗ 27)(Bytes)

BWeff(Bytes/sec)



SpMV The SpMV routine is very similar to SYMGS, but performs only one
step. The pseudo code is:

Loop j=1..LNI(depth)

Loop i=1..27

c[i]+=a[j]*b[index[j]

endloop

d[i]=c[i]

endloop

The number of iterations, memory accesses and main computational oper-
ations are the same for both routines. The model is therefore analoguous to
above:

executionSpMV (sec) =
LNI ∗ (20 + 20 ∗ 27)(Bytes)

BWeff(Bytes/sec)
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Fig. 4. Modeled and measured execution time of the two most expensive computational
routines.

WAXPB The WAXPB routine behaves like a triad vector kernel, which is
the most complex scenario of all stream vector kernels. The update of two scaled
vectors is shown below.



Loop i=1..LNI(depth=0)

c[i]=alfa*a[i]+beta*b[i]

endloop

Vectors a, b and c contain elements of size double. So, 24 Bytes from memory
are required for every iteration. The number of iterations is always the same for
a given input set as only the main loop calls the WAXPB routine directly. The
execution time is modelled as:

executionWAXPB(sec) =
LNI ∗ 24(Bytes)

BWeff(Bytes/sec)

DDOT First the DDOT routine computes locally a dot product before per-
forming a global sum operation across the system. The multiplication of vector
elements and accumulation of the results into a single variable in pseudo code:

Loop i=1..LNI(depth=0)

c+=a[i]*b[i]

endloop

While computationally WAXPB and DDOT are different, their memory foot-
print is very similar. However, the DDOT routine only requires 16 Bytes per
iteration. The execution time without communication is modelled as:

executionDDOT (sec) =
LNI ∗ 16(Bytes)

BWeff(Bytes/sec)

5.3 Modelling communication

We execute HPCG in parallel using MPI, which requires static data distribution
across processes with separated address spaces. Naturally, the data decompo-
sition is 3-dimensional due to the 3D sparse matrix. Each process receives the
same input size and the algorithm is almost perfectly load balanced. Communica-
tion between processes uses the MPI interface and there are two communication
routines: MPI Allreduce that finalizes the DDOT routine and a halo exchange
between neighbouring MPI processes.

Both routines use the MPI COMM WORLD communicator. There is no
interleaving of communication between different communicators, which makes
routing in the IC network easy. Both routines use blocking MPI calls and the
nature of the algorithm holds no potential for overlapping communication and
computation. The communication behaves as synchronization points for all pro-
cesses.

Collective The MPI Allreduce is the only collective communication used in
the algorithm. The operation reduces a single variable of size double over all
processes. As with all collective operations, the MPI Allreduce implementation
relies on point-to-point communication and the optimal implementation depends



on the topology of the IC network itself. The hypercube algorithm performs re-
duce among N processes in log(N) steps. The algorithm reduces the information
in the least number of steps necessary and shows the highest efficiency for regu-
lar topologies. The amount of data per communication step is 8 Bytes, thus we
consider the latency between processes as the only relevant IC parameter and
disregard the bandwidth in the model.

For N MPI processes and a given latency l between processes, we predict the
execution time of a MPI Allreduce operation as

executionAllreduce(sec) =

M∑
i=1

li(log(Mi)− log(Mi−1))

Each index refers to a group of processes with the same latency. E.g. l0 refers
to the latency between MPIs within a socket, l1 refers to the latency between
MPIs within a node that are located on different sockets, l2 refers to the latency
between MPIs within a blade that are located on different nodes etc. Mi is the
maximum number of MPI processes in a group with the same latency time.
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Fig. 5. Modeled and measured execution time of the MPI Allreduce operation (8 Byte)



Point to point The halo exchange is a nearest-neighbor data exchange. It
is a common communication pattern for MPI-HPC applications. The number of
neighbors of a given MPI process depends on the location in the decomposition
grid, the maximum being 26 neighbors. If HPCG is run on 27 or more MPI
processes at least one process has 26 neighbors in the halo exchange phase.
The maximum data size that one process receives or sends during a single halo
exchange instance is:

maxHaloSize(Bytes) = (2(nx ∗ ny + nx ∗ nz + ny ∗ nz) +

4(nx+ ny + nz) + 8) ∗ 8Bytes

The MG routine calls the halo exchange from different depths, reducing the
halo size by a factor of 22∗depth. Figure 6 shows the execution time of the Ex-
changeHalos routine for different problem sizes. Rendezvous protocol introduces
a significant performance drop which should be part of the model.

We assume the minimal effective bandwidth for data movement across the
IC in the halo exchange (IC BWeff ). As even for large workloads maxHaloSize
is relatively small for modern IC networks, the overhead of the MPI call plays
an important role. Halo exchange is achieved through a sequence of MPI Irecv,
MPI Send and MPI Wait. The overall model is:

executionHaloEx(sec) =
maxHaloSize

IC BWeff
+ 26(overhead(Irecv, Send,Wait)) +

overhead(Rendezvousprotocol)

The overheads for Irecv, Send and Wait can be directly determined from the
latency, the overhead of the rendezvous protocol is determined from the MPI
pingpong benchmark. The latter can be easily avoided by adjusting the corre-
sponding parameter, however, as it barely impacts the model, we did not do
so.

5.4 Modelling the whole benchmark

MG – a combination of routines The MG routine combines multiple
routines and calls them from different depths. The multi-grid level decreases the
problem size by 23∗depth.

Thus, larger depth indicates smaller problem size and shorter execution time.
In the forward recursion phase, the MG calls the sequence HaloEx-SYMGS-
HaloEx-SpMV up to depth 2, while depth 3 performs only HaloEx-SYMGS.
The backward recursion phase calls HaloEx-SYMGS. The following sum gives
the execution time of the MG routine.

executionMG = HaloEx(depth = 3) + SYMGS(depth = 3) +
2∑

depth=0

(2 ∗ SYMGS(depth) + SpMV (depth) + 3 ∗HaloEx(depth))
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Fig. 6. Measured execution time of halo exchange for platform B with increasing mes-
sage size. The impact of the rendezvous protocol is clearly visible as a jump in execution
time.

Total execution time The main loop does 50 iterations, calling the sequence
MG-DDOT-WAXPB-SpMV-DDOT-WAXPB-WAXPB-DDOT. The first itera-
tion calls one instance of WAXPB less, we forgo considering this in the model.
Thus, the execution time of one iteration is modelled as:

totalT ime = MG+ SpMV (depth = 0) + 3(DDOT +WAXPB)

Predicting Gflop/s In order to calculate the Gflop/s, HPCG predicts the
number of floating point operations necessary per routine and measures the
execution time. Input data set and the total number of non-zeros define the
total number of floating point operations. If we assume 27 non-zero elements per
row for a large problem size, the total number of non-zero elements is:

nnz = N ∗ nx ∗ ny ∗ nz ∗ 27
The resulting total number of floating point operation is:

MGflop = 10 ∗ (nnz + nnz/8 + nnz/64) + 4 ∗ (nnz/128)

SMPVflop = 2 ∗ nnz
DDOTflop = 6 ∗N ∗ nx ∗ ny ∗ nz



WAXPBflop = 6 ∗N ∗ nx ∗ ny ∗ nz

Combined with the prediction of the execution time, this allows us to predict
the achieved Gflop/s and thus completes the performance model of HPCG. The
model is suitable for large problem sizes (per MPI process) and is viable even
for very large systems, which matches the HPCG target as a new benchmark for
the TOP500 list.

6 Results

We have validated the proposed performance model by comparing predicted
performance values to measured results. The model shows excellent predictability
of HPCG performance. Based on the model we then predicted the performance
on envisioned future systems.

6.1 Validating the model

The essential part of the HPCG model is a prediction of computational routines
which have almost constant execution time for different numbers of cores.

We analyze the HPCG routines for a large problem size and different number
of cores. For all data shown, large refers to the size (96x96x96) per core. Figure
7 compares percentages of execution time per routine, measured on platform B.
The MG pre-conditioner clearly is the most expensive routine, taking more than
80% of the total execution time and very slowly become less important for larger
numbers of cores, while the MPI Allreduce slowly becomes more important. The
computational routines take more than 98% of the total execution time.

In order to determine the effective bandwidth to main memory and the la-
tency of the IC, we obtained results by using the Triad stream benchmark kernel
and a MPI pingpong benchmark respectively. Table 2 shows results for the dif-
ferent platforms.

Platform A Platform B Platform C

BWeff(MB/s) per core 4705 1700 3430

IC latency(µs) (min, max) 2 4 2 90 4 240
Table 2. Effective memory bandwidth measured by using the Triad stream kernel and
minimal/maximal IC latency measured by the osu mpi benchmark.

Figure 8 compares the measured and modeled HPCG computational routines
per node for platforms A-C.

Figure 9 shows the measured performance results vs. the predicted perfor-
mance for the whole benchmark. As can be seen, HPCG scales approximately
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Fig. 7. Percentage of HPCG total execution time per routine. Measured on platform
B.

linearly with N and the performance predictions from our model are very accu-
rate (deviations of less than 2%).

Finally, we tested our model by predicting the performance for a full HPC
system, of which we had no performance data during model creation, and subse-
quently comparing to the real performance results. This supercomputer is based
on XC40 nodes and an Aries interconnection network. Each node contains two
Intel Haswell E5-2680v3 2,5 GHz, 12 cores per socket with 128GB of DDR4-
2133 RAM memory. Each socket has 30MB of L3 cache. Having determined the
effective memory bandwidth (3740MB/s per core) and the maximum IC latency
(3 µs), we predicted the performance and then ran HPCG across all 3900 nodes
(93600 cores) with a problem size of (nx,ny,nz)=(144,144,144) per MPI process.
Our model predicts the overall performance to within 1% of the real value.

6.2 Extrapolating HPCG performance to future systems

High requirements for Byte/Flops renders the computational kernels of HPCG
memory-bound for all modern machines. In order to predict HPCG benchmark-
ing potential for future exascale systems, we consider that all computational
kernels will remain memory-bound, which is to be expected.
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Fig. 8. Predicted vs. measured execution time per computational routine for platforms
A-C.

Further, communication obviously costs time without producing Flop/s. There-
fore, it is to be expected that the benchmark will be run with the largest prob-
lem size which fits to the main memory in order to increase the computation
to communication ratio. This is analoguous to what can be observed for the
HPL benchmark. Machines featured in the TOP500 currently have 2GB of main
memory or more per physical core. According to the memory usage formula from
section 4 the largest problem size which fits to main memory is (128,128,128) per
MPI process and we assume future systems will have similar amounts of main
memory per core.

Communication cost grows with N due to the MPI Allreduce. In Figure
10 we show an extrapolation to very large numbers of cores for platform B,
the problem size is taken as (128,128,128). We have evaluated for the current
hardware properties, and furthermore changed one property at a time by one
order of magnitude. For the current setting, the communication cost stays below
1,2% of the entire execution time for machines with up to one million cores.
Furthermore, for one billion cores, the communication still costs below 3%. As
can be seen in Figure 10, unless the available Byte/Flop ratio or the IC latency
increase significantly for future systems, the communication cost will remain
irrelevant even at the exascale.
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7 Conclusion

The TOP500 list relies on HPL, a benchmark increasingly unrepresentative for
the performance issues real-world applications face today. Thus, as hardware ven-
dour try to boost HPL results, hardware development is subtly steered towards
increasing overall compute cycles and frequencies, which cannot be exploited and
even introduce overheads in energy consumption. HPCG, a prominent candidate
for the next step in supercomputer benchmarks, moves into the right direction:
by featuring memory-bound kernels, it reflects the bottlenecks of real-world ap-
plications more realistically.

As we have demonstrated in this paper, it is possible to predict the perfor-
mance of HPCG with accuracy, relying only on two numbers: effective memory
bandwidth from main memory and highest occurring IC latency. Obviously, the
logical conclusion is, that the performance of HPCG only depends on these two
numbers. The effective memory bandwidth determines the necessary time to ex-
ecute the computational kernels, as the limiting factor is the availability of data
to perform computations on. The IC latency determines the time to perform the
MPI Allreduce, as the amount of data (per process) being communicated is only
8 bytes and therefore IC bandwidth is irrelevant. The MPI Allreduce is the only
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relevant communication, as it’s time requirement increases with log(N), while
the point-to-point communication is constant in N .

Furthermore, as shown in the paper, the problem size is extremely relevant.
Especially, the smallest hitherto allowed problem size can fit into the L3 cache
on certain hardware. In this case, the effective bandwidth of interest of course
is to the L3 cache, which is a lot higher then to the main memory, speeding
up the benchmark accordingly. We argue that this is a problem: Hardware with
sufficiently large L3 cache get a huge competitive edge, which is not sensible.
We argue the problem size should have a much more restrictive lower limit, to
ensure it does not fit to L3 cache, as discussed in [12]. Given that small prob-
lem sizes will be restricted, the obvious choice will be to increase the problem
size to the limit of main memory, thereby diminishing the relative cost of com-
munication. We have shown that for a representative current supercomputer
architecture, this strategy effectively dwarves communication cost. Keeping the
hardware specifications and extrapolating to a system with one billion cores, the



communication cost is less than 3%. Thus, even the IC latency can be effectively
ignored, rendering the overall performance approximately proportional to the
effective memory bandwidth of one single node.

Thus, HPCG is in danger of encountering the same problems as HPL: by
allowing arbitrary problem sizes only one system property is relevant for the
final result, while the performance of real-world applications depends on a much
more diverse set of properties. We suggest this approach be reconsidered. Even
simple changes to the execution protocol could drastically improve on this. For
example, running a suite of short simulations with varying, predefined system
sizes and reporting the (weighted) average performance.

Our model targets performance prediction for the official, unmodified HPCG
benchmark (version 2.4) run on homogeneous clusters. In the future, we plan
to extend our model to heterogeneous architectures, e.g. featuring GPGPU and
Xeon Phi accelerators.
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